TWO NEW SPECIES OF ALPHEID SHRIMP FROM AUSTRALIAN WATERS \ddagger

DORA M. AND ALBERT H. BANNER*
Hawaii Institute of Marine Biology, University of Hawaii, Honolulu, U.S.A.

ABSTRACT

Abstract

One new species of alpheid shrimp, Alpheus soelae sp. nov., colleeted by the CSIRO vessel, the R.V. "Soela". from the Australian Northwest Shelf, and one new speeies. Alpheus stantoni sp. nov., eolleeted on Heron Island, on the Great Barrier Reef are deseribed and illustrated.

KEYWORDS: taxonomy, Alpheidae, Australia, deep sea, eoral reefs.

INTRODUCTION

The Division of Fisheries Research of the Commonwealth Scientific and Industrial Rescarch Organisation has been engaged in a survey of the benthic resources of the Australian Northwest Shelf region, off Port Hedland, Western Australia.

This survey, during 1983-1985, resulted in extensive collections of little known or new crustaecans from the little studied waters. Numcrous representatives of the family Alpheidac were collected, amongst which was a single example of a species that is here described as new. A description of another new species of Alpheus Fabricius from Heron Island, Queensland, at the southern end of the Great Barrier Reef, colleeted by Mr Frank G. Stanton, a post-graduate student of the University of Hawaii, is also provided. The present species raise to 84 the number of speeies of Alpleus now known from Australian waters.

SYSTEMATICS
 Alpheus soclae sp. nov.

(Fig. 1)
Type Material. HOLOTYPE - \uparrow, Northern Territory Museum (NTM) Cr. 001994, TL 37 mm , bearing one possible small egg (irregular but yellow) at the upper interior margin of the first pleuron, eollected in a trawl haul of the R.V. "Soela" (Operation $50,18^{\circ} 41^{\prime} \mathrm{S} 120^{\circ} 07^{\prime} \mathrm{E}, 9$ February 1984. 430 m , coll. T. Ward).

Description. Rostrum clearly longer than broad at base, tip reaehing to middle of visible portion of first antennular artiele (note: anterior appendages appear to have been dis-
placed forward in handling, exposing the bases of the antennular peduneles); rostrum dorsally rounded and extended only slightly posterior to middle of eornea. Cornea apparently of normal pigmentation. Orbital hoods only slightly inflated, with short, acute teeth arising abruptly from curvature of margin and reaching well past middle of rostrum; orbitorostral grooves shallow and poorly demarked.

Second antennular article 4.4 times as long as broad, 1.5 times as long as visible portion of first (which is exposed to its base) and 2.7 times as long as third article. Stylocerite acute, slightly overreaching first antennular article. Scaphocerite with outer margin slightly coneave; squamous portion narrow, reaching to end of third antennular article; outer tooth acutc, reaching slightly beyond squame. Carpocerite overreaching antennular peduneles by nearly length of third article. Basicerite with lateral tooth prominent, reaehing to near level of end of stylocerite.

Articles of third maxilliped with ratio; 10:4:6; all articles bearing long setae; tip bearing setae only, not spines.

Large chela 3.8 times as long as broad, with fingers occupying distal 0.28. Dactylus with superior surface high but rounded, with plunger low and confluent, with surface of daetylus similar to that of A. distinguendus De Man (see Banner and Bannẹr 1982:23, Fig. 4C); tip extending well beyond tip of propodal finger rounded in superior profile and flat on oppositive surface. Propodal finger with groove, not socket, to aecommodate daetylus and with moderate tufts of long setae near daetylar artieulation. Palm rounded in section with lateral face bearing a
\ddagger A contribution from the Hawaii Institule of Marine Biology.

* The co-author of this paper, Professor Alberı H. Banner, died on 19 Augus1 1985, and the aulhor, Dora May Banner, on 15 December 1986.
low rounded ridge reaching proximally from dactylar articulation for about one-third length of palm; ridge separated on either side by broad, shallow and ill-defined grooves;superior groove lying below condylar crest, inferior groove extending into face of propodal finger. Medial face of palm without sculpturing. Palm bearing only scattered setac, slightly concentrated along inferior margin. Carpus normal. Merus 2.6 times as long as broad, bearing along inferointernal margin 6 short, slender spines interspersed by longer setac; ncither superior nor inferior distal angles projecting. Ischium bearing on inferointernal margin and at distal angle a few spines similar to those of merus.

Small chcla almost as long as large chela. with tips of fingers reaching to same level as does propodal finger of large chela, slender. 5 times as long as broad with fingers and palm almost cqual in length. Lateral face of palm bearing a well-demarked ' v '-shaped groove running from near dactylar articulation to linea impressa (note: because of the ' v '-shapc of the groove and its strong demarkation, we believe it to bc an artifact from prescrvation. such as shrinking of muscular tissue in a strong alcoholic solution; whether the groove coincides distally with a shallow 'u'-shaped groove, such as that found on the large chela, could not be determined). Dactylar articulation flanked on either sidc by a moderate, sub-acute tooth. Medial face of palm bearing some scattered setae, latcral face glabrous. Fingers straight and slender, and at most subbalaeniceps (see Banner and Banner 1982:22), with tips strongly hooked and crossing; both fingers bearing on either side a dense row of highly setiferous bristles that intermesh when chela is closed; rows on both fingers stopping abruptly before the hooked tips. and the rows on dactylus not meeting on supcrior surface of article. Merus 2.7 times as long as broad, bearing on inferointernal margin 4 small acute spines interspersed with long setae; margin projecting distally as a right-angled tooth; other distal angles not projecting. Ischium also bearing 2 small spines on inferodistal margin.

Carpal articles of second legs with ratio: 10:5.5:2.5:3.5.

Ischium of third leg 0.3 as long as merus, bearing a slender spine. Mcrus inermous, 2.8 times as long as broad. Carpus 5.5 as long as merus, with projection of superodistal mar-
gin rounded. Propodus 0.8 as long as merus, bearing on inferior margin 7 spines and a distal pair, interspersed with a few long setae. Dactylus simple, slightly curved and tapering uniformly to an acute tip; bcaring on superior surface a slight notch with a few short sctae inserted.
Telson 3.8 times as long as posterior margin is broad, anterior margin 1.5 times as wide as posterior margin: lateral margins with uniform taper, postcrior margin projecting as a low arc. Posterolateral spines slender and short; anterior pair of dorsal spines located anterior to middle. Spine on outer uropod uncolored in preservative.
Colouration. Primarily white, with an extensive reddish zone of fine speckling medially along whole body length, most strongly marked on first to fourth abdominal segments, extending more fecbly over upper parts of pleura and caudal fan. Antennal peduncles, third maxilliped, chelae, pereiopods and pleopods white. Antennal border of carapace red. antennal flagellac pink and corncas black.

Discussion. Two remarks should be made about this specimen: First, of the Indo Pacific alpheids known, this species is one of the decpest dwelling: at $430-450 \mathrm{~m}$, it is exceeded only by Alpheopsis shearmii (Alcock and Anderson) (1899:283) at 430 fathoms (785m) in the Arabian Sea and Athanas phyllocheles Banner and Banner (1983:152, Fig. 14) from 450 m in the western Indian Occan (off Reunion). Second, for an alpheid dwelling in deep water, in contrast to the more littoral forms, it shows surprisingly little modification (see, for example, the species reported from around 200 m collected by the MUSORSTOM Expedition (Banner and Banner 1981:218).

In most characteristics. including the form of the large chcla, the rostrum and orbital tecth, ctc., the species appears to be firmly within the sulcatus group. The dense rows of setiferous bristles on the sides of the fingers of small chela of the female separate it from all other members of the group - indeed, we do not recall any spccies of the genus Alpheus with a similar modification. Because marked sexual dimorphism in the small chelac is rare in the Sulcatus Group, we suspect the male small chela will be similar to that of the female. The species is clearly scparated from the members of the group without orbital

teeth, like A. sulcatus Kingsley. Of the larger group with orbital teeth, many have the dactyli of the third legs biunguiculate: these include A. architectus Dc Man. A. canaliculatus Banner and Banner, A. gracilis Heller. A. parasocialis Banner and Banner. A. socialis Heller, A. tungii Banner and Banner, and A. villosus (Olivicr). A. lottini Guérin has orbital teeth and lacks a biungulate dactylus on the walking legs, but it is easily separated from this and all other species of Alpheus, by the heavy and bluntly rounded shape of the dactyli of the three posterior pair of the thoracic legs. Five species share the teeth on the orbital hoods and simple dactyli with A. soelae; in addition to the unique fringe of setac on the small chela, they may also be separated from the new species by the following characteristics: A. brucei Banner and Banner bears a transverse groove on the large chela proximal to the dactylar articulation; A. facetus De Man bears a more marked groove on the superior lace of the large chela, but lacks the low ridge and inferior groove on the lateral face; the large chelae of A. coetivensis Coutiére, A. supachai Banner and Banner and A. splendidus Coutiére all lack grooves on the palm of the large chela: and A. splendidus can further be separated by the location of the orbital teeth, high on the orbital hoods, not on the margins.

This new species may be inserted in our key to the species of Alpheus of Australia (1981:26) by inserting the following couplet after the present couplet 12:
13(12). Both margins of both propodal finger (pollex) and dactylus of small chela bearing dense rows of setiferous bristles A. soelae
Fingers of small chela bearing at most scattered setae 13a.
Then the present couplet 13 can be renumbered as 13 a and the following key be continued in its present arrangement.

Alpheus stantoni sp. nov.

(Fig. 2)
Type material. HOLOTYPE - 9 , NTM Cr. 003435, TL 26 mm, Heron Island, Great Barrier Reef, Australia, dug out of coral rubble at $13 \mathrm{~m}, 26$ August 1983, coll. F.G. Stanton.

Description. Rostrum relatively long with tip reaching near end of first antennular arti-
cle (in lateral view). Broad with length about twice breadth at base posterior to orbital hoods, dorsally flattened without trace of carina. Orbital hoods distinct and somewhat inflated with anterior margin curved. Orbitorostral grooves deep and well demarked, with lateral margins of rostrum definitely overhanging medial wall of groove; rostrum continuing posteriorly to posterior margin of orbital hoods. Orbitorostral margin only slightly concave between anterior margins of hood and lateral margins of rostrum.

Second antennular article 1.3 times as long as visible part of first and about 2 times as long as wide, third article half as long as second. Distal margins of articles bearing long fine sctae. Stylocerite acute, reaching just past end of first antennular article. Outer margin of scaphocerite slightly concave, lateral tooth reaching well beyond antennular peduncle with squamous portion short and narrow and a little shorter. Lateral tooth of basicerite small but acute. Carpocerite 5.6 times as long as broad, viewed laterally, and as long as scuame.

Ratio of articles of third maxilliped: 10:3.0:5.4. Lateral margin of first article bearing distally a rounded tooth. Third article distally bearing strong setac.

Large chela 3.0 times as long as broad, fingers occupying distal third; superior saddle well developed, proximal shoulder rounded and projecting above saddle, distal shoulder rounded. Lateral palmar groove triangular with apex extending to near proximal articulation (proximal portion of groove may be an artifact from handling). Medial surface of palm similar to lateral except lower margin bearing a more pronounced shoulder: proximal extension of groove reaching along crest of palm; crest bearing a fow long setae. Merus 2.3 times as long as broad and distally bearing on superior margin slight rounded projection beset with a few long hairs; inferointernal margin irregularly serrate with few setae and distally bearing strong tooth.

Small chela of female 4.6 times as long as broad with fingers 1.3 times as long as palm; palm and fingers bearing long setac with more setae on fingers than palm. Mcrus 3.8 times as long as broad, similar to large chela except inferointernal margin not serrate and distal tooth smaller. Male chela unknown.

Fig. 2. Alpheus stantoni: a, b, antcrior region, dorsal and lateral views; c, third maxilliped, lateral face; d, e, large chela and merus modial faces; \mathbf{f}, large cheliped, lateral face; \mathbf{g}, large chela, superior face; \mathbf{h}, \mathbf{i}, small cheliped medial and lateral faces; \mathbf{j}, sccond leg; \mathbf{k}, third leg; \mathbf{I}, telson and uropods. All drawings except c , scalc b.

Carpal articles of second leg with ratio: 10:10:3:3:5.

Ischium of third leg bearing spine. Merus 5 times as long as broad with inferior margin bearing 3 spines and a few setae but no distal tooth. Carpus 0.7 as long as merus and 6.2 times as long as broad. Propodus 0.9 times as long as merus, bearing on its inner margin 5 moderate-sized spines and a pair distally. Dactylus simple, curved. 0.5 as long as propodus. Fourth leg with merus 6.6 times as long as broad, with inferior margin bearing 2 small spines and some stiff setae.

Telson with maximum breadth slightly posterior to articulation and with breadth at this point 1.6 times that of posterior breadth. Length 2.6 times posterior breadth. Posterior margin arcuate and projecting, with posterolateral spines relatively weak. Dorsal spincs normal and strong, with anterior pair anterior to middle and posterior pair near middlc.

Colouration. (From a color transparency taken by Mr Stanton of the living specimen, shown in dorsal view): Basically scattered light red chromatophores on a transparent to translucent whitc ground color, with concentrations of the chromatophores in the anterior region including the bases of the first and scond antennae, as indistinct transverse bands on the tergal of the second and sixth abdominal segments and on the tail fan. The chelae are solid red with white fingers on the large chela: the following thoracic legs bear a single red band on the ischium and the proximal end of the merus and another band on the distal end ol the merus; otherwise, the appendages and the antennular and antennal flagcllae are transparent. No lateral markings are discernible in photograph.

Biological notes. The sole specimen was collected by Mr Stanton while he was studying alpheid-goby associations off Heron Island, Great Barrier Reef, Australia. The specimen came from a sand and coral rubble bottom beyond the edge of the northwest corner of the Heron Island fringing reef in 13 m of water. Mr Stanton's technique would be to observe a shrimp-goby hole with its occupants, then plunge a "plastic spade" into the substrate behind them in an effort to prevent the occupants from fleeing to further reaches of the tunnel. He would then exca-
vate the sand-rubble by hand, usually 5 10 cm deep and $30-40 \mathrm{~cm}$ wide. Such an excavation produced this shrimp, but Mr Stanton is emphatic that it was not the same species of shrimp as the one he saw associated with the goby (Amblyeleorris sp.) at the mouth of the burrow. Whether it lived independently or associated with another goby he does not know.

Discussion. The presence of movable spines on the merus of the third leg is rare in the genus Alpheus - we can recall only A. philoctetes De Man and A. lanceloti Coutière in the Diadema Group and A. alcyone De Man in the Crinitus Group bearing them and they do not occur in any Indo-Pacific members of the Edwardsii Group, yet the sculpturing of the chela in this species plainly places it within the last group.

The species within the Edwardsii Group that have a rostrum similarly flattened dorsally are A. bisincisus De Haan (see Banner and Banner 1982:263. Fig. 81), A. proseuchirus De Man (1908:111; 1911:407, Fig. $96)$ and A. spatulatus Banner and Banner (1968:146, Fig. 3). Of these three, A. stantoni is somewhat similar in the rostral base to A. proseuchirus, but in the latter species the sculpturing on the largc chela is greatly reduced - for example, the inferior shoulder on the outer face is lacking and the third legs are more slender and elongate. In A. bisincisus the rostral base does not overhang the orbitorostral grooves and the sculpturing of the large chela is heavier with the inferior shoulder protruding as an acute tooth. A. spatulatus can most easily be distinguished by the spatulate condition of the dactyli of the third and fourth legs as well as by the length of the rostrum and proportions of the meri of the large and small chelae.

In our key to the genus Alpheus from Australia (1982:30) this species can be separated easily by inserting the following dichotomy after couplet 51:
52(1). Meri of third and fouth legs bearing movable spines A. stantoni Meri of third and fourth legs perhaps bearing a fixed tooth but not movable spines

52a.
Then the present couplet 52 can be remembered as 52a and the following key be continued in its present form.

This species has been named for its collector, presently a doctoral candidate in the Department of Zoology, University of Hawaii.

ACKNOWLEDGEMENTS

We wish to thank Dr A.J. Bruce of the Northern Tcrritory Muscum, Darwin, for his cooperation in sending us the specimen from Northern Australia.

REFERENCES

Alcock, A, and Anderson. A.R. 1899 An account of the deep-sea Crustacea dredged during the survey-ing-season ol 1897-98. XLIII. Natural history notes from H.M. Royal Indian Marine Survey Ship "Investigator", Commander T.H. Heming, R.N., commanding. Series 1II, No. 2. Annals and Magazine of Natural IIsisory (7) 3:278-292.
Banner, A.H. and Banner, D.M. 1968 Three new species of the genus Alphens (Decapoda, Alpheidae) from the International Indian Ocean Expedition. Crustaceana 15(2):141-148.
-_ 1981 Decapod Crustacea, Alpheidae. In: Resultats des campagnes MUSORSTOM. I. Philippincs (18-28 Mars, 1976). Memoirs ORSTOM 91:217-235.
Banner, D.M. and Banner. A.H. 1982 The alpheid shrimp of Australia, Part III. The remaining alpheids principally the genus Alpheus, and the family Ogyrididae. Records of the Australian Muscum 34(1):1-357.
Banner. A.11. and Banner, D.M. 1983 An annotated checklist of the alpheid shrimp Irom the Western Indian Occan. Travaux et Document ORSTOM 158:1-164.
Coutière, H. 1905 Les Alpheidac. In: J.S. Gardiner (cd.) The fanna and geography of the Maldive and Laccadive Archipelagos 2(4):852-921. University Press: Cambridge, England,
De Man, I.G. 1908 Diagnosis of new species of macrurous decapod Crustacea from the "Siboga-Expedition." III. Notes Leyden Musenm 30(14):98-112. - 1911 The Decapoda ol the Siboga Expedition. Part II. Family Alphcidac. Siboga-Fxpeditie 39a ${ }^{\prime}(2): 133-465$.

1915 Supplement...Explanation of plates of Alpheidae. Siboga-Experlitie 39a' (2):23 plates.
Accepted 7 May 1986

